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Atomic arrays provide an important quantum optical platform with photon-mediated dipole–dipole interactions
that can be engineered to realize key applications in quantum information processing. A major obstacle for such
applications is the fast decay of the excited states. By controlling two-band Bloch oscillations of single excitation
in an atomic array under an external magnetic field, here we show that exotic subradiance can be realized and
maintained with orders of magnitude longer than the spontaneous decay time in atomic arrays with the finite size.
The key finding is to show a way for preventing the wavepacket of excited states scattering into the dissipative
zone inside the free space light cone, which therefore leads to the excitation staying at a subradiant state for an
extremely long decay time. We show that such operation can be achieved by introducing a spatially linear po-
tential from the external magnetic field in the atomic arrays and then manipulating interconnected two-band
Bloch oscillations along opposite directions. Our results also point out the possibility of controllable switching
between superradiant and subradiant states, which leads to potential applications in quantum storage. © 2024
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1. INTRODUCTION

Light–matter interaction in subwavelength scale is of broad in-
terest in quantum information processing and quantum met-
rology [1,2]. Such interactions in subwavelength atomic arrays
[3–28] can induce long-range nonlinear dipole–dipole inter-
actions by mediating photons in radiation modes [3,5,29,30]
or via long-range van der Waals interactions between Rydberg
states [31]. Further controls of atomic arrays by magnetic fields
bring remarkable physical phenomena, including super- and
subradiant states [32], photon storage and retrieval [33–35],
subradiance-protected quantum state transport [36], and many
others [37–45]. These quantum information processing meth-
ods utilize subradiant quantum states with inhibited spontane-
ous decay and exhibit useful applications in quantum storage
[46]. Previous research shows that single-excitation subradiant
states in one-dimensional (1D) arrays ofN atoms typically have
decay rates scaling as N −3 with a lifetime of 7 orders of

magnitude greater than that of a single atom for N ∼ 200
[6,11,15]. Nevertheless, it generally desires a quantum state
lasting long enough for the purpose of quantum storage
[46]. A challenging problem is that subradiant states can diffuse
into the superradiant subspace through the interaction or
boundary effect, which limits their applications in quantum
information processing.

Here we show that a judicious coherent control of finite-size
atomic arrays can prevent single-excitation subradiant states
from entering the superradiant subspace and thus realize sub-
radiance with a lifetime of orders of magnitude longer than that
of a single atom with the help of an external magnetic field.
Specifically, we consider a well-established model with atomic
arrays under the magnetic field, which lifts the degeneracy of
excited states in each atom through the Zeeman shift (labeled as
j�i and j−i) [37,38,41]. Such systems with an infinite size can
support subradiant collective excited states outside of the dis-
sipative zone in the momentum space [6,11,15]. However, for
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the same system with a finite size, such excitation inevitably
spreads to the boundaries and the wavepacket gets scattered
into the dissipative zone. To overcome such obstacles, we in-
stead apply a spatially linear magnetic field, which brings linear
potentials with opposite slopes on j�i and j−i states [see
Fig. 1(b)]. Similar 1D lattices under linear potentials support
Bloch oscillations [47–58]. Fundamentally different from the
previous work, Bloch oscillations in atomic arrays under a linear
magnetic field support two-band Bloch oscillations with inter-
band interactions such that the wavepacket of excited states os-
cillates on two bands along opposite directions alternatively.
This unique picture can force the wavepacket spatially localized
within a few atoms while preventing the excitation from enter-
ing into the dissipative zone. Hence it supports subradient os-
cillations surviving extremely long time with finite atoms. We
also show the way of switching between superradiant and sub-
radiant oscillations by tuning the external magnetic field, which
provides the opportunity for reading out information from sub-
radiant quantum states [59–62].

2. MODEL

The developments of state-of-the-art technologies in various
experimental platforms such as trapped neutral atoms at the
subwavelength scale [19–28,63–68] pave the way for exploring
exotic phenomena in atomic arrays. We study such arrays of
atoms that are equally spaced at a distance a along the y-axis
[yn � na for the nth atom in Fig. 1(a)]. Each atom has a ground
state jgi and degenerate excited states. We apply an off-plane
magnetic field B�y� in the z-direction to lift the degeneracy of
two excited states j�i. Under the single-excitation limit, the
dynamics of the wave packet of the excited states is described

by the non-Hermitian Hamiltonian after integrating out pho-
tonic modes [37,38,41],

H eff � ℏ
XN
n�1

X
α��

�
ωA − i

γ0
2

�
jαnihαnj

�
XN
n�1

μBn�j�nih�nj − j−nih−nj�

� 3πℏγ0c
ωA

X
n≠m

X
α, β��

Gαβ�yn − ym�jαnihβmj, (1)

where ωA is the atomic transition frequency, γ0 is the atomic
decay rate in the free space, μBn∕ℏ is the Zeeman shift for the
nth atom with the magnetic moment μ, andGαβ�yn − ym� is the
free-space dyadic Green’s function describing the electric field
at yn emitted by the atom located at ym. With the relation
j�i � ��jxi � ijyi�∕ ffiffiffi

2
p

, one obtains G�� � G−− � −eik0r ·
�k20r2 − ik0r � 1�∕�8πk20r3� and G�− � G−� � eik0r�k20r2 �
3ik0r − 3�∕�8πk20r3�, where r � jyn − ymj and k0 �
ωA∕c � 2π∕λ with λ being the wavelength and c being the
vacuum speed of light [38,41]. Equation (1) shows a tight-
binding lattice model where excitations on sites at two arms
(j�i) have on-site potentials V �,n ≡�μBn and are connected
by complex and long-range photon-mediated hoppings. In par-
ticular, we consider the magnetic field

Bn � nB0, (2)

where B0 is a constant. Equation (2) gives V �,n � �nμB0,
which leads to the effective constant force F� � �μB0∕a
in opposite directions on the two excited states. Two effective
electric fields in opposite directions on two separated arms in
the lattice bring Bloch oscillations on two arms exhibiting
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Fig. 1. (a) Schematic of a 1D V-type atomic array under a magnetic field B�y�. (b) Schematic of the corresponding lattice where the nth atom has
non-degenerate excited states j�ni with frequency shifted by�μBn∕ℏ. Blue lines indicate a linear trend of Bn as in Eq. (2). (c) Band structures with
different constant magnetic fields Bc with values Bc � 0; 4ℏγ0∕μ; 8ℏγ0∕μ; 12ℏγ0∕μ, respectively. Black arrows indicate values of Bc for correspond-
ing bands. Decay rates of modes are color coded. Probabilities of eigenstates on (d) band II and (e) band I projected on j�i states for different Bc .
Here, a � 0.1λ.
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symmetric patterns. However, once the two arms are connected
[by terms including G�� in Eq. (1)], the dynamics of the
Bloch-oscillation wavepackets on the two arms is influenced
by each other, which can be analyzed in the field-free Bloch
band picture.

We first study the band structure of the infinite atomic
arrays with constant magnetic field Bc [37,38]. The single-
excitation Bloch modes are given by

jΨky i �
X
n

�C�,ky j�ni � C−,ky j−ni�eikyna

� �C�,ky C−,ky �T , (3)

where ky is the Bloch wave vector. The Hamiltonian in the
momentum space on two arms has the form

Hk

ℏ
�
 
ωA − i γ02 � χ��

ky
χ�−
ky

χ−�ky ωA − i γ02 � χ−−ky

!

�
 
i μB0
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d
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!
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where χαβky � 3πγ0c
ωA

P
n≠0 e

ikyna Gαβ�na� and diagonalization of
the first term plus the shifts caused by the constant magnetic
field gives the two-band structure. Our results show that the
oscillatory mode for an extended Gaussian distribution of the
single-excitation wavepacket approximately evolves in a single
band. The second term in Eq. (4) would transform the distri-
bution on one band into two bands and gives the acceleration
force in one band and the tunneling strength to the other band,
which surpasses the former one if the two arms have compa-
rable probabilities. We thus bring in a phenomenological
force averaging on two arms, hF i ≡ μB0

a

P
nhΨj�j�nih�nj−

j−nih−nj�jΨi � μB0

a

P
n�P� − P−�, to estimate the acceleration

force.
We choose a � 0.1λ, which brings the first Brillouin zone

ky ∈ �−5k0; 5k0	. We plot band structures in ky-space for differ-
ent Bc in Fig. 1(c). For each Bc , there are two bands, and it
exhibits large collective decay, i.e., the dissipative zone in
the free-space light cone (jkyj < k0). Outside of the dissipative
zone, subradiant states are supported. For Bc � 0, there are two
degenerate points near ky � �2.3k0, while two bands are sep-
arated in the entire ky-space for other Bc. We denote the lower
(upper) band as band I (II) and define PI�II�

� as the probability
intensity of an eigenstate on band I (II) projected onto the arm
of j�i states. PII� and PI� are shown in Figs. 1(d) and 1(e),
respectively. One notes that PI�II�

� � PI�II�
− � 1. When there

is no magnetic field, PI
� � PII

� � 0.5 in the entire ky-space,
indicating that probabilities for exciting j�i states are equiva-
lent due to the degeneracy of j�i. However, form ≠ 0, it shows
asymmetric distributions of PI�II�

� . In particular, for Bc > 0 on
band I (II), we can see that PI� < 0.5 (PII� > 0.5), meaning
that less (more) density of the state is located on the arm of
j�i states. Distributions of PI�II�

� are highly symmetric because
the influence of j�i is symmetric under the positive/negative
magnetic field. Moreover, we find that, for Bc > 0 at
ky � �2.3k0, it shows PI� � 0 (PII� � 1) on band I (II).
We note that band structures in Fig. 1 are calculated by simply
summing the Green’s function in real space over all lattice sites,
which artificially induces the inaccurate eigenvalues at ky near

�k0 in the free-space light cone due to slow convergence.
However, this inaccuracy in band structures does not affect the
later analysis throughout this paper. Also, if desired, it can be
overcome by summations of Green’s function in momentum
space with an appropriate regularizing method [37,38].

We next introduce the simulation method for studying the
dynamics of the single excitation wavepacket in the atomic
arrays. We use the Schrödinger equation djΨ�t�i∕dt �
−iH eff jΨ�t�i∕ℏ and the excitation wavepacket of the atomic
array jΨ�t�i �P

n�C�,n�t�j�ni � C−,n�t�j−ni	e−iωAt, where
jC�,nj2 gives the excitation probability of the j�i state in the
nth atom. Two hundred one atoms (n � −100,…; 0;…; 100)
are considered in the arrays. B0 � 0.2ℏγ0∕μ is used in simu-
lations. We assume that the wavepacket of the system is initially
prepared at a superposition state on two arms following
C�,n�0� � ψ� exp�ikcan − �n − nc�2∕200	, where nc is the
spatial center of the initial excitation, kc is the initial momen-
tum, and ψ� gives the initial ratio of excitation amplitudes on
two arms of the j�i states. Such an initial state in the weak
excitation limit can be pumped with phase-controlled schemes
[32,33,59,69] or by applying a spatial modulation of the
atomic detuning [18].

3. RESULTS

For finite atomic arrays, the key ingredient for maintaining a
long-standing subradiant state is to prevent the wavepacket
from entering into the dissipative zone either by oscillations
or scattering due to the boundary effects. One might notice
that the well-established Bloch oscillation may lead the wave-
packet oscillation within a finite spatial region and propagating
unidirectionally in the ky-space [50,53,70], so by frequently
altering the direction of the constant force, it is possible to ac-
complish the task for avoiding entering the dissipative zone.
Nevertheless, here we show that one can realize such a task
in atomic arrays under a spatially linear but temporally constant
magnetic field [Eq. (2)], which leads to effective constant forces
in opposite directions on the two excited states. Once the two
arms are connected via photon-mediated dipole–dipole inter-
actions, the effective electric force that acts on the single-exci-
tation wavepacket depends on the wavepacket distributions
between the two arms. Our results show that an extended
Gaussian distribution of the single-excitation wavepacket ap-
proximately evolves in a single band driven by the phenomeno-
logical force hF i, which can be estimated by the eigenstate
distributions of the moving wavepacket in a band structure
under a constant magnetic field felt by the wavepacket center.
The ability of altering the effective force direction during Bloch
oscillations provides the mechanism to build subradiant states
that avoid entering the dissipative zone inside the free-space
light cone and are spatially localized far away from the boun-
dary of the finite array.

To see the long-standing subradiant state, we excite the
wavepacket centered at n � 0, i.e., nc � 0, with ψ� � ψ− �
0.168 and kc � 1.5k0, which satisfies

P
n�jC�,n�0�j2�

jC−,n�0�j2	 � 1. The evolutions in the simulation are plotted
for the time up to 10TB , where TB � 2πℏ∕μB0 � 10π∕γ0.
Figures 2(a1) and 2(b1) depict the dynamics of jC�,n�t�j2
and jC−,n�t�j2, respectively, and one sees a sustained Bloch

Research Article Vol. 12, No. 3 / March 2024 / Photonics Research 573



oscillation pattern with the shape of the wavepacket deforming
gradually. The excitation of the j�i (j−i) states in the atomic
arrays is mainly located in the finite region with y < 0 (y > 0)
so there is no boundary effects due to finite atoms.

We then perform fast Fourier transform (FFT) on the sim-
ulation results C�,n�t� and calculate the projection of the ex-
cited wavepacket in ky-space onto the two bands [excitation
probabilities PI�ky, t� and PII�ky, t�, respectively]. Note
that the Bloch band picture is valid only with constant mag-
netic field. Here, the linear magnetic field and resulting con-
stant force produce perturbation, so we can calculate the
projection by taking into account the uniform potentials at
the value of V �,n � �n̄μB0, where n̄ ≡ hΨjPn�j�ninh�nj�
j−ninh−nj�jΨi is the mean position of the wavepacket. This
analysis in the Bloch band picture with uniform on-site poten-
tials reveals dynamical features different from a conventional
Bloch oscillation. Figures 2(c1) and 2(d1) show the evolution

of excitation probabilities of band I and band II and PI and PII

at each ky. The choice of ψ� makes the initial excitation on
band I, and throughout the evolution, PII is about 1 order
of magnitude smaller than PI. Remarkably, one sees that PI

does not evolve unidirectionally on ky with time, which gives
the fundamental difference from the conventional Bloch oscil-
lations. The evolution direction of PI reverses every time
(referred to as the reverse time) before it enters the free-space
light cone in the ky-axis [dash lines in Figs. 2(c1) and 2(d1)],
which leads to the important consequence of avoiding a large
collective decay of the excited wavepacket. We further show the
total excitation probabilities of the j�i state and the j−i state
(P�, P−) in the real space and the total excitation probability
Pt � P� � P− in Fig. 2(e1). We find that the times when
P� � P− are exactly the same as the reverse times because the
phenomenological force hF i becomes zero and subsequently
changes its direction. In other words, when the center of

Fig. 2. Bloch oscillations for Gaussian excitations initially centered at nc � 0 with kc � 1.5k0 on band I (left) and kc � 4k0 on band II (right),
shown by temporal evolution for excitation probabilities of (a1), (a2) jC�,nj2; (b1), (b2) jC−,nj2; (c1), (c2) PI�ky�; (d1), (d2) PII�ky�; (e1), (e2) P�,
P−, and Pt . Here, a � 0.1λ and μB0∕ℏ � 0.2γ0.
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the wavepacket arrives at n � 0, P� ≈ P− and hence hFi
changes its direction, resulting in the reverse of PI�ky� in
the momentum space. Moreover, Pt exhibits no decay in this
dissipative atomic system, which is actually lasting ∼108γ−10
given by the simulation with a much longer evolution time.
Therefore, as long as the excited wavepacket in the atomic ar-
rays does not enter the dissipative zone inside the free-space
light cone, the life time of the excitation gives the subradiant
feature, which is much longer than the free-space decay time.
Such extreme subradiant oscillations can be optimized by
choosing initial excitations. In particular, we find that Pt
can last more than ∼1013γ−10 for an initial state centered at
kc � 3k0 on band I. Based on the eigenvalue analysis of the
effective Hamiltonian for an array under a linear magnetic
field, one can determine the decay rate of the most subradiant
eigenstate, which is consistent with the property of the opti-
mized subradiant Bloch oscillations (see Appendix A for
details).

As one may notice, the initial choice of the excited wave-
packet determines how the wavepacket evolves in ky-space
and hence how the wavepacket decays. For example, if we
choose ψ� � 0.168, ψ− � −0.168, and kc � 4k0 to excite
band I or ψ� � 0.168, ψ− � −0.168, and kc � 2k0 to excite
band II, we find the total probability of the wavepacket under-
goes no decay even though the evolution patterns are different
(see Fig. 5 in Appendix A). However, in the case of ψ� �
ψ− � 0.168 and kc � 4k0, with band II being excited, the dra-
matically different dynamics is as shown in Figs. 2(a2)–
2(e2). One notes that the excitation undergoes a rapid decay
after the partial oscillation during the initial time duration

∼11γ−10 . The fundamental difference here is that the excitation
probability PII moves into the free-space light cone along the
ky-axis before hFi changes its direction. This result leads to a
very fast decay within ∼8γ−10 for the total probability Pt drop-
ping to ∼0.02. In real space, the excitation on the j−i arm de-
creases fast, while the excitation on the j�i arm increases
initially with an oscillation towards the positive y-axis but
decays rapidly afterwards.

The two-band Bloch oscillation in the atomic arrays under
the linear magnetic field brings unique opportunity for
manipulating the decay of the excited wavepacket. For instance,
we can control the collective decay exhibiting quantization-like
decay with stable plateaus, as shown in Fig. 3(c1). To achieve it,
we choose ψ� � ψ− � 0.168 and kc � k0, so the wavepacket
on band I centered at k0 is initially excited. The simulation
results are summarized in Figs. 3(a1)–3(c1). The wavepacket
experiences decay at t ∼ 0 because the initial wavepacket is par-
tially inside the free-space light cone. However, the wavepacket
initially moves toward the positive direction in the ky-axis [see
PI�ky� � PII�ky� in Fig. 3(b1)], so Pt ends in a stable plateau at
t ∼ 2γ−10 with a value ∼0.67. At t ∼ 27γ−10 , the excited wave-
packet is reached at ky � −k0, and a reversal happens due to
the change of hF i, which results in a rapid drop of Pt to
∼0.48. Periodic oscillations are exhibited, together with the os-
cillations of Pn � jC�,nj2 � jC−,nj2, in the real space. The to-
tal excitation probability Pt therefore shows the overall decay
tendency with the periodic plateaus [see Fig. 3(c1)]. Initial
excitations inside the free-space light cone can exhibit similar
oscillations but quicker decay. Particularly, for an initial wave-
packet at kc � −0.5k0 on band II, Pt decays to ∼0.02 within

Fig. 3. Bloch oscillations for Gaussian excitations initially centered at nc � 0 and kc � k0 on band I with a static magnetic field (left) and a
controllable magnetic field (right), whose zero point is shifted to y � 30a over a time period from 0 to 20γ−10 and back to y � 0 over a time period
from 180γ−10 to 200γ−10 , shown by temporal evolution of (a1), (a2) Pn; (b1), (b2) PI � PII; (c1), (c2) P�, P−, and Pt . Other parameters are the same
as those in Fig. 2.
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t ∼ 0.85γ−10 , or a collective superradiant decay rate of ∼4.7γ0.
Moreover, excitations with nc ≠ 0 can bring different Block os-
cillation phenomena because the central momenta at reverse
times are changed during the evolution of the wavepacket
(see Appendix A for details).

Taking advantage of the relation between reverse times and
the atomic position in the linear magnetic field, one can control
the momentum of the wavepacket at the reverse time. The
magnetic field acts as an effective field on the single particle
and breaks the spatial translation symmetry, which leads to
the particle movement in the momentum space. Change of
the magnetic field would alter the effective force and the mo-
mentum space evolution of the wavepacket. We give an exam-
ple in Figs. 3(a2)–3(c2), where the spatial distribution of the
linear magnetic field relative to the atomic position is tuned to
control the evolution of the wavepacket that is initially excited
at k0 on band I [the same as that in Figs. 3(a1)–3(c1)]. In the
numerical simulation, we tune the zero point of the magnetic
field from y � 0 to y � 30a over a time period from 0 to
20γ−10 . As a result, after Pt drops to the first plateau, the wave-
packet oscillates around the new center y � 30a [Fig. 3(a2)]
and reverses at ∼�1.4k0 in the momentum space to maintain
subradiance [Fig. 3(b2)]. The excitation can also be driven to
the dissipative zone by moving the zero point of the magnetic
field back to y � 0 over a time period from 180γ−10 to 200γ−10
and decay radiatively, shown by descending plateaus in the total
excitation probability.

4. DISCUSSION AND CONCLUSION

The proposed atomic arrays can be realized in various exper-
imental systems. Dependent on different experimental plat-
forms, atomic arrays can be composed with atom ensembles
in the gas phase, such as neutral particles, including Rydberg
atoms trapped in optical lattices [19,21–23,63,64] and optical
tweezers [20,24–28,65–68], or atom-like particles in the solid
phase, such as color defects in diamond nanophotonic devices
[71,72], and excitons in atomically thin semiconductors [73].
Considering the possible imperfection of atomic positions and
the inhomogeneous broadening in the atomic array, numerical
results show that positional disorder suppresses the positive in-
fluence of the magnetic field on subradiance (see Appendix B
for details). This limitation is expected to be overcome by the
development of experimental control techniques. On the other
hand, the effect of decay suppression can be found in arrays
with different atomic numbers and interatomic distances to
possibly decrease experimental challenges. The performance
of subradiance relies on the magnitude of the linear magnetic
field. The parameters used above present better initial state se-
lections and characteristic performance of Bloch oscillations,
which may further be optimized for extreme subradiance.
Moreover, it has been shown recently that dispersionless or
trapped subradiant photon states can be created in one-dimen-
sional emitter chains [74]. Different from Ref. [74], our study
shows that, in the model with the external magnetic field it is
possible to decrease the subradiant decay rate to smaller than
that in the atomic arrays without the magnetic field and also
points out the possibility of quantum-state switching from the
external-field control.

In summary, we have explored single-excitation dynamics in
1D atomic arrays under a linear magnetic field. Resulting two-
band Bloch oscillations are studied. We found that the evolu-
tion of the wavepacket in the momentum space depends on the
phenomenological force hF i, which is determined by local
properties of the band structure and thus influenced by the po-
sition of the wavepacket in the real space. Compared to the
conventional Bloch oscillations, the evolution direction of
the momentum reverses as long as the wavepacket passes the
position where hFi changes its sign. Taking advantage of this
unique property, we show the capability of generating exotic
subradiant oscillations that lasts orders of magnitude greater
than the atomic spontaneous decay time. Our study takes ad-
vantage of the external control from the magnetic field and
therefore points toward fundamental opportunities in switch-
ing quantum states between superradiant and subradiant states
and realizing an extreme subradiant quantum state that could
be useful in important applications for quantum storage.

APPENDIX A: BLOCH OSCILLATIONS FOR
DIFFERENT INITIAL STATES

Here, we show more studies with different parameters in
atomic arrays with an interatomic distance a � 0.1λ. We per-
form simulations for a much longer evolution time with initial
parameters ψ� � ψ− � 0.168 and kc � 1.5k0 to excite
band I. The excitation probabilities of each atom Pn�t� �
jC�,n�t�j2 � jC−,n�t�j2 and in the momentum space
PI�ky, t� � PII�ky, t� of an N � 201 atomic array are shown
in Figs. 4(a1) and 4(b1), respectively, for a period of 300γ−10
after t � 108γ−10 . Oscillations for the excitation last ∼108γ−10 ,
though the wavepacket has dispersed. The excitation wave-
packet avoids entering the dissipative zone and largely stays
on band I in the momentum space. Furthermore, we plot
the evolution of total excitation probabilities for different num-
bers of atoms in Fig. 4(c1). With parameters initiating subra-
diant Bloch oscillations, the subradiant life time does not
change with the atomic number of long arrays due to the spatial
confinement of the oscillations. When the length of the atomic
array is comparable to the extended region of the Bloch oscil-
lations, the life time decreases rapidly due to scattering at each
end of the finite array.

We plot simulations for another initial state of ψ� � 0.168,
ψ− � −0.168, and kc � 3k0 to excite band I in Figs. 4(a2)–
4(c2), which gives an optimum life time of Bloch oscillations
over 13 orders of magnitude greater than the atomic sponta-
neous decay time. Pn�t� in Fig. 4(a2) and PI�ky, t��
PII�ky, t� in Fig. 4(b2) of an N � 201 atomic array show more
confined oscillations in both the real space and the momentum
space, for a period of 300γ−10 after t � 1013γ−10 . The life time of
the excitation drops significantly only for a small atomic
number N � 51.

If we choose ψ� � 0.168, ψ− � −0.168, and kc � 4k0 to
excite band I [Figs. 5(a1)–5(c1)] or ψ� � 0.168, ψ− �
−0.168, and kc � 2k0 to excite band II [Figs. 5(a2)–5(c2)],
then we find the total probability of the wavepacket undergoes
almost no decay even though the evolution patterns are differ-
ent. In the momentum space, the wavepacket reverses and os-
cillates around the degenerate point ky ∼ 2.3k0 in the band
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structure without the magnetic field and thus experiences slow
dissipation.

Initial excitations inside the free-space light cone exhibit
quick decay. Figures 5(a3)–5(c3) show results for an initial
wavepacket at kc � −0.5k0 on band II. Pt decays to ∼0.02

within t ∼ 0.85γ−10 , which is fitted with an exponential decay
function e−4.7γ0t .

Next, we consider excitations with nc ≠ 0. We find that
when nc is close to 0, similar phenomena shown above can
be found. When nc is far away from 0, Bloch oscillation

Fig. 5. Bloch oscillations started from nc � 0 for Gaussian excitations initially centered at kc � 4k0 on band I (left), kc � 2k0 on band II
(middle), and kc � −0.5k0 on band II (right), shown by temporal evolutions of (a1)–(a3) Pn, (b1)–(b3) PI�ky� � PII�ky�, (c1), (c2) total excitation
probabilities P� (red solid line), P− (black dash line), and Pt (green dash-dotted line). An exponential function is used to fit the decay of the total
excitation probability in (c3) (blue dotted line). Here, N � 201, a � 0.1λ, and μB0∕ℏ � 0.2γ0.

Fig. 4. Bloch oscillations for a Gaussian excitation initially centered at nc � 0 with kc � 1.5k0 (left) and kc � 3k0 (right) on band I. Temporal
evolution of (a1), (a2) Pn � jC�,nj2 � jC−,nj2 and (b1), (b2) PI�ky� � PII�ky� in an array with atomic number N � 201 within a time period of
300 γ−10 after t � 108 γ−10 (left) and after t � 1013 γ−10 (right). (c1), (c2) The total probability Pt versus order of magnitude of time forN � 51 (blue
solid line), N � 101 (green dash-dotted line), N � 151 (red dash line), and N � 201 (black dotted line). a � 0.1λ and μB0∕ℏ � 0.2γ0.
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phenomena deviate from the cases with nc � 0 if the same ini-
tial momentum kc is taken. The reason is that during the evo-
lution of the wavepacket, the central momenta at reverse times
change compared to cases with nc � 0, which leads to a differ-
ent evolution pattern in the momentum space. As an example,
we show the simulation results in Fig. 6 with ψ� � 0.0502,
ψ− � 0.232, kc � 1.5k0, and nc � 50 to excite band I.
Compared with simulations in Figs. 2(a1)–2(e1) in the main
text, the difference here is that the center of the excited wave-
packet moves from 0 to 50a. The wavepacket evolution shows
periodic oscillations with gradual reduction of the amplitude in
the real space. From Fig. 6(b), one can see the momenta at
reverse times are around ky � �k0, which leads to the decay
of the total probability with periodic plateaus, as shown in
Fig. 6(c). This phenomenon is similar to the case with
nc � 0 and the initial momentum kc � k0 in Figs. 3(a1)–3(c1)
in the main text. Larger deviation from the center in the initial
excitation with kc � 1.5k0 can cause the wavepacket to evolve
into the dissipative zone further and exhibit quicker decay.

APPENDIX B: DECAY RATES OF SINGLE-
EXCITATION EIGENSTATES

We give an analysis of decay rates of collective eigenstates in
atomic arrays and their dependence on the linear magnetic
field. For the interatomic distance and atomic number consid-
ered in the main text [Fig. 7(a)], lower decay rates can be
achieved by applying the linear magnetic field. The most sub-
radiant decay rate reduces as B0 increases to ∼0.05ℏγ0∕μ
and then rises. Numerical results determine that the decay
rates of the most subradiant states are γ � 8.1 × 10−29 for

B0 � 0.05ℏγ0∕μ and γ � 1.2 × 10−13 for B0 � 0.2ℏγ0∕μ.
For shorter atomic arrays with N � 101 in Fig. 7(b), larger
magnetic field gradients cause similar effects, but small mag-
netic field gradients have limited influences on the decay rate
suppression. Variation of interatomic distance causes more evi-
dent changes of single-excitation eigenstates. For a � 0.2λ and
N � 201 in Fig. 7(c), the positive influence of the magnetic
field on the decay rate suppression is limited to very small mag-
netic field gradients. Large magnetic field gradients give rise to
increased collective decay rates and the lifetimes of subradiant
states noticeably decrease.

Here, we briefly discuss the effect of positional disorder and
inhomogeneous broadening on single-excitation collective de-
cay rates. The deviations of emitter positions from an ideal ar-
ray are modeled by randomly placing the atom within a width
of δa from each lattice site along the y-axis. We plot the most
subradiant single-excitation decay rate in an atomic array with
increasing disorder in Fig. 8(a). Without the external magnetic
field, the subradiant decay rates noticeably increase after
δa∕a reaches 10−2. Under a linear magnetic field with B0 �
0.2ℏγ0∕μ, the almost perfect array supports extreme subradiant
states with decay rates ∼10−13γ0, which is much lower than the
case without the magnetic field. However, a slight disorder of
δa∕a ∼ 10−6 starts to weaken the subradiant effect. A disorder
of δa∕a > 10−3 suppresses the positive influence of the mag-
netic field on the subradiance and leads to larger decay rates
than the case without the magnetic field. We also model the
Doppler shifts approximately by setting a random frequency
shift of each atom according to a Gaussian probability distri-
bution of width ΔD and neglecting the spatial movement of
atoms, as shown in Fig. 8(b). The increasing of decay rates

Fig. 6. Bloch oscillations started from nc � 50 for a Gaussian excitation initially centered at kc � 1.5k0 on band I, shown by the temporal
evolution of (a) Pn, (b) PI � PII, (c) P� (red solid line), P− (black dash line), and Pt (green dash-dotted line). Here N � 201, a � 0.1λ,
and μB0∕ℏ � 0.2γ0.
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Fig. 7. Numerically calculated decay rates in descending order of single-excitation eigenstates in an atomic array under a linear magnetic field with
varying μB0∕ℏγ0 indicated by different colors for (a) a � 0.1λ, N � 201; (b) a � 0.1λ, N � 101; and (c) a � 0.2λ, N � 201.
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starts with smaller Doppler shifts in arrays with the mag-
netic field.
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